сряда, 11 ноември 2015 г.

External combustion engine VS External combustion - internal cooling engine

Charts 1 and 2 depict external combustion engine, such as a free cooler imaginary (as in the familiar environment external combustion engine) closes the cycle. Accept that the 20% waste heat engines produced 100kW power for a given capacity of the converters of heat into mechanical energy (turbines, pistons in cylinders).

chart 1


chart 2

chart 3


chart 4


Charts 3 and 4 am figuring engines of the same capacity of the converters of heat into mechanical energy as chart 1 and 2, but here I have no imaginary "free" cooler. Close the cycle  by using force to close the cycle - cooling gas as  I use cooler - External combustion - internal cooling engines. Waste heat (20%) cooler return it in the evaporators of the unit. Accept that besides waste heat in evaporators returns heat equal to the force I used to close the cycle + 20%  of heat . So aggregates of diagrams 3 and 4 for the same capacity of the turbines will produce 40% less mechanical energy than units with imaginary "free cooling". If a  cooler is free - 100kW, and if  cooling is "paid" - 60 kW of power.
External combustion 100kW
External combustion - internal cooling - 60kW
for the same capacity of the turbine (piston / cylinder)

chart 5





chart 6


 On chart 5 am drawn external combustion engine with real free cooler - environment. On chart 6 - engine by method - external combustion - internal cooling, with the same parameters.
Assume - on 20% waste heat  - 100kW power of external combustion engine

Verdict:

1.On 20%  waste heat - 100kW  useful power of external combustion engine
   On 20%  waste heat -  60kW   useful power of external combustion - internal cooling engine for one and the same capacity of the turbines.

2.For the same capacity of the converters of heat into mechanical energy engine - external combustion - internal cooling gives 40% less mechanical power, but uses 40% less heat - no waste heat.

3. Another small deficiency on engine  by external combustion method - necessarily need heater to heat the hot part,  so that the engine to have a cold part. On the engine  by external combustion - internal cooling method the cold part we create it, so that we can use any heat, including of heater.

chart7



chart 8




Let's  take one external combustion engine as the  chart 2  filled with the same three working substances (ammonia, R41, R14) and go to Planet X, which has an atmosphere with a temperature of 130K - chart 7. Now, for such a unit will have free cooling, as we have in mind that the last working substance (R14) has a boiling point of 145K, and the atmosphere of Planet X on which the temperature is 130K. Light a burner and heat ammonia to 290K. I accept that for a 20% waste heat engine will gives  100kW mechanical energy.
Redesign the  External combustion engine to an External combustion- internal cooling by removing heat exchanger which cools the last working substance to liquefy in the atmosphere of the planet X - chart 8. Set in its place cooler loaded with nitrogen. Waste heat set it back into evaporators. As I said above, now I lose 40% of the power output of the unit, but also decreased  40% fuel in the burner.

On Planet X unit working with these substances can only work with heater, whether external combustion engine or an external combustion - internal cooling engine.

On Earth we do not need a heater - Sun heated the atmosphere at 290K and hence heat ammonia. But on Earth mandatory for these working substances  unit must be  performed by External combustion  - Internal cooling method, because no natural cold part.

Conclusions:

Engine - external combustion

1 With external combustion engine ever we need a heater.
2 In these units have free cooling 
3. We have waste heat

Engine - External combustion- internal cooling

1 Heater is not mandatory
2 For  the same capacity of converters of heat into mechanical energy (turbines; pistons / cylinders) has a lower power than external combustion engine
3 No waste heat

Summary of advantages and disadvantages of the method for converting heat into mechanical energy - External combustion - internal cooling

When using External combustion engine we pay for heating and cooling is free.
When using External combustion  - internal cooling engine is not required to pay for heating, but must pay for cooling.

 The price we play for cooling with internal cooling method is - less power for a given capacity of the converters of heat into mechanical energy (turbines; pistons/cylinders )


                        06 January 2016

I made some mistakes in the calculations for external combustion - internal cooling. True comparison between the two engines in the same capacity of the converters of heat into mechanical energy should look like:
At 100 kW  useful power and 20 kW waste heat

1. External combustion engine:
120 kW power of the heater
100 kW useful power
 20 kW waste heat

2.  External combustion -  internal cooling engine:

80 kW power from the heater 
80 kW useful force
 0 kW waste heat 
    20 kW from the gross mechanical power is converted into heat (so the net power becomes: 100-20 = 80 kW)
+  20 kW waste heat -  these two amounts of heat returned to the evaporator(s). This requires to reduce the power output of the heater wiht 40 kW : 120 - (20 + 20) = 80 kW 

It would be good to think about things in depth before presenting them to readers. I beg your pardon!

:) :) For my next invention I intend to never wrong :) :)

06 Jan 2016                
Svetozar the Cold